Poltava State Medical University, Department of oncology and radiology with radiation medicine assistant Nestulia K.I.

Imaging and detectors for medical physics

Lecture 2: X-ray imaging and CT

Book

S

- N Barrie Smith & A Webb Introduction to Medical Imaging Cambridge University Press
- 2. Edited by M A Flower Webb's Physics of Medical Imaging CRC Press
- 3. A Del Guerra Ionizing Radiation Detectors for Medical Imaging World Scientific
- 4. W R Leo

Techniques for Nuclear and Particle Physics Experiments Springer-Verlag

X-ray in the body

Ref. 1 – Chapter 2, Ref. 2 – Chapter 2

• X-rays going through patient's body get attenuated: $I(x) = I_0 e^{-\mu \mathcal{E} \cdot x}$

 I_0 = X-ray fluence in entrance I(x) = X-ray fluence at position x = fluence in exit $\mu(E)$ = X-ray linear attenuation coefficient

- X-ray linear attenuation coefficient μ[cm⁻¹] depends on X-ray energy
- In tissue mass attenuation coefficient often used $\mu/\rho[cm^2g^{-1}]$, with $\rho[g/cm^3]$ = tissue density

X-ray transmission imaging

 Basis = differential absorption of X-rays by tissues = for ex. bone absorbs X-ray more than soft tissue

Tissue	μ(cm ⁻¹)	$I(x)I_0 x = 1 cm$	Difference to muscle (%)
Air	0.000	1.0	+20
Blood	0.178	0.837	+0.2
Muscle	0.180	0.835	0
Bone	0.480	0.619	-26

 Contrast agents = chemicals introduced in patient's body to enhance contrast between tissues

X-ray transmission image formation

Image formation:

- X-rays from source directed toward patient → some X-rays absorbed + some X-rays transmitted
- 2. X-rays transmitted detected in exit from patient
- 3. Measured in exit from patient = fluence distribution = linear attenuation coefficient distribution
- Some X-rays scattered inside patient = image noise / background

X-ray imaging techniques

Planar radiography

- Image = 2D projection of all tissues between X-ray source and detector
- X-ray source and detector fixed

Computed Tomography

- Image = 3D image of body region
- X-ray source and detector rotate at high speed around patient + patient moved in third direction
- Disadvantage respect to planar radiography = much higher dose

Other X-ray imaging techniques

X-ray fluoroscopy

Images are acquired continuously \rightarrow to study passage of X-ray contrast agent through GI tract

- Digital mammography
 Images are acquired with lower X-ray energies than standard X-ray scans → to obtain images with much finer resolution
- Digital subtraction angiography
 Images are acquired at extremely high resolution → to image vasculature
- Digital X-ray tomosynthesis
 Hybrid planar radiography CT: fixed screen + rotating source

X.ray source for transmission imaging = X-ray tube

- Cathode = filament + focusing cup
- Anode = target that rotates at high speed to reduce localised heat
- Filament and target usually tungsten
- Efficiency for e⁻ conversion in X-rays ~1%, rest dissipated in heath
- Strong vacuum inside tube → unimpeded path between cathode and anode
- Oil surrounding the envelope = dissipates heat from anode

Materials for the filament and

Tungsten: most commonly used

Characteristics	Advantages
Emission at ~2000 °C	High and stable e ⁻ thermionic emission
Melting point 3370 °C	Can withstand very high temperatures generated in the anode
High $Z = 74$	High X-ray production efficiency ¹
Good thermal conductivity + Low vapour pressure	Can operate in very high vacuum

¹Bremsstrahlung yield increases with Z

 Molybdenum: used in digital mammography that requires very low energy X-rays = less heat generated

X-ray tube		
parameters		
Tube parameters	Values	
Accelerating voltage ΔV_{C-A} , kVp	25÷140 kV ¹	
Tube current <i>I</i> from the cathode to the anode	50÷400 mA for 2D radiography Up to 1000 mA for CT	
Exposure time	Limited by anode heating	

¹25 kV for mammography, 140 kV for bone and chest

- These parameters are chosen by the operator according to the specific application
- 2D radiography and CT scanners = different set-up
 → same X-ray tube cannot be used for both

Power

rating

Power rating – Definition

Maximum power dissipated in an exposure time of 0.1 s

• Exercise

Q = What is the maximum exposure time of a tube with a power rating of 10 kW, when operated at 125 kV with 1 A of current? What modality is this?

A =

Power dissipated = kVp * I = 125 kV * 1 A = 125 kW

 $Exposure time * Power dissipated = Power rating \rightarrow Power rating = \frac{Power rating}{Power dissipated} = \frac{10}{125} = 80 \text{ ms}$

A couple of definitions

Field-of-view (FOV)

https://en.wikipedia.org/wiki/Field_of_view

 FOV of optical instruments or sensors = solid angle through which detector is sensitive to radiation = solid angle imaged by the detector

Penumbra

Ref. 2 – Chapter 2.5.5

 Penumbra P = unsharpness
 / blurring in the image due to finite size of X-ray source:

$$P = a \frac{d_1}{d_2}$$
Source $\stackrel{a}{\longleftarrow}$
blane
$$d_1$$

$$d_1$$

$$d_1$$

$$d_1$$

$$d_1$$

$$d_2$$

$$d_3$$

$$d_2$$

$$d_3$$

$$d_4$$

for 2D X-ray

- X-ray tube: generates the X-ray beam
- Collimator: reduces patient's dose and amount of Compton scattered X-rays
- Anti-scatter grid: reduces amount of Compton scattered X-rays = background/noise → increases image contrast
- Digital detector: converts transmitted X-rays into light and then into electric signal
- Read-out electronics: digitises and reads the signal from the detector

Collimators and grids

Collimators

- Sheets of lead placed between X-ray source and the patient
- Restrict dimension of the beam to the FOV in 1D or 2D
- ★ → reduce amount of X-rays reaching the patient = only X-rays inside FOV reach the tissue → dose reduced + scattered reduced

Anti-scatter grids

- Parallel or slightly divergent strips of lead foil with aluminium spacers
- Amount of scattered X-rays absorbed depends on length, thickness and separation of lead strips
- Some non-scattered X-rays are absorbed → increase in dose to get same image intensity of one without grid

Detectors and electronics

Ref. 1 – Chapter 2.7

- Computed radiography
 Instrumentation = detector plate + separate reader
- Digital radiography

Instrumentation = detector and reader are one unit

- 1. Indirect = X-ray converted into light by scintillator \rightarrow light converted into electric signal by photon detector
- 2. Direct = X-ray converted into electric signal by materials such a:Se.

Less efficient than indirect conversion device

Signal-to-noise ratio (SNR)

Ref. 1 – Chapter 2.8.1

- Signal = N of X-rays arriving on detector
- Statistical fluctuations in number of X-rays detected per unit area → noise
- Statistical fluctuation follow Poisson distribution $\rightarrow \sigma_{noise} = \sqrt{\mu}$ with μ mean value

$$SNR = \frac{N}{\sigma_{noise}} = \frac{N}{\sqrt{\mu}} \propto \sqrt{N}$$

• Exercise: What is the dose increase if doubling *SNR*? A: $2 \times SNR = 2 \times \sqrt{N} = \sqrt{4 \times N} \rightarrow 4 \times N = 4 \times Dose$

Factors affecting SNR

1. X-ray tube current I and exposure time t_e :

 $SNR = \sqrt{I \times t_e}$

- 2. X-ray tube kVp: the higher kVp the higher the X-ray energy \rightarrow greater penetration in tissue \rightarrow signal increases \rightarrow *SNR* increases in a non-linear way
- 3. Detector efficiency: the higher the efficiency the more X-rays are detected \rightarrow signal increases \rightarrow *SNR* increases
- 4. Patient size and body part to be imaged: the greater the tissue thickness the higher the X-ray attenuation \rightarrow signal decreases \rightarrow *SNR* decreases
- 5. Anti-scatter grid: attenuates Compton scattered X-rays \rightarrow reduces signal $\rightarrow SNR$ decreases

Spatial resolution

Ref. 1 – Chapter 2.8.2

- Factors affecting spatial resolution:
 - Set-up geometry: penumbra P = unsharpness / blurring in the image due to finite size of X-ray source generates → ideal set-up:
 - a. Smallest possible X-ray spot size
 - b. Patient on top of detector
 - c. Large distance between source and patient
 - 2. Detector's properties: detector's intrinsic spatial resolution

Contrast-to-noise ratio (CNR)

Ref. 1 – Chapter 2.8.3

- Factors affecting CNR:
 - 1. X-ray energy: the higher the energy the more X-rays undergo Compton scattering \rightarrow CNR decreases
 - 2. FOV: up to 30 cm the larger the FOV the higher the number of Compton scattered X-rays reaching the detector \rightarrow CNR decreases; above 30 cm there is no change
 - 3. Thickness of body part being imaged: the thicker the section the more X-rays undergo Compton scattering + the more X-rays get absorbed \rightarrow CNR decreases
 - 4. Anti-scatter grid: reduces the Compton scattered X-rays reaching the detector \rightarrow CNR increases

Computed Tomography (CT) scanners

Collimator

CT scanner:

- X-rays rotating source
- Diametrically opposite detector unit Market:

~30,000 scanners worldwide, 60 millions CT scans performed annually in USA

Courtesy Mike Partridge (Oxford)

X-ray source

Page 20/49

Computed Tomography (CT)

Ref. 1 – Chapter 2.12

- Basic principle:
 - Conventional CT:
 - 1. Series of 1D projections at different angles is acquired continuously by synchronously rotating the X-ray source and detectors through one complete revolution around the patient
 - 2. The 1D projections are combined by the process of filtered backprojection to form the 2D CT image, also called slice
 - Spiral / helical and multi-slice helical CT
 - 1. 2D slices are acquired as in conventional CT
 - 2. Multiple adjacent slices are acquired by moving the patient's couch along the direction perpendicular to the slices' plane to give 3D images

Instrumentation for

conventional (T		
Instrumentation	Notes	
X-ray tube	Same as in planar radiography kVp = 80, 100, 120,140 kV	
Collimators	Same as in planar radiography	
Anti-scatter grids	Same as in planar radiography but usually integrated in the detector array	
Detectors	Only one detector unit = 1D array of several hundred $15 \times 1 \text{ mm}^2 \text{ detectors}^1$ along circumference	
Heavy gantry	Has fixed to it X-ray tube and detector unit and rotates at high speed	

¹Detector = scintillator (converts X-rays into light) + photodiode (converts light into electric signal)

• Note: detector's orientation = wider side (15 mm) along couch axis \rightarrow slice thickness determined by width of collimated beam that is < 15 mm

Instrumentation for helical

- X-ray source and couch moved at the same time
 → X-ray path = helical
- Conventional CT set-up modified as follows:
 - 1. Power supply and signal transmission cables are substituted by multiple slip-rings

<u>Reason:</u> impossible to have fixed cables for power supply and signal transmission to read-out system

X-ray tube: specially designed to withstand very high temperatures in anode
 <u>Reason:</u> X-rays produced (almost) continuously → no cooling period → anode reaches very high temperatures = higher than in conventional CT

for multi-slice

- Same operation as helical CT but bigger detector unit
 → larger volumes can be imaged in a given time
- Same set-up as of the helical CT but with different geometry of the detector unit = 2D array of smaller detectors
 - Along couch axis = detector size is much smaller (can be ~0.5 mm) but there are multiple rows that cover up to 16 cm → slice thickness determined by detector width = smaller than in helical CT
 - 2. Along circumference = detector size (1 mm) and number of detectors per row are the same as for helical CT 1D array

Dual-source

 Dual-source CT = 2 X-ray tube + multi-slice detector chains <u>Reason:</u> increases temporal resolution = 2 x temporal resolution of single-source CT

Gantry's rotation = gravitational forces on scanner \rightarrow rotation speed limited (< 100÷160 ms for 180°) \rightarrow temporal resolution limited

- Features:
 - Set-up: 1 standard chain (can be used alone) + 1 chain with narrow-arc detector = smaller FOV (~2/3) (only used with other)
 - 2. Data acquisition modes:
 - a. Single energy = both tubes operated at same kVp
 - b. Dual energy = tubes operated at different kVp = 140 keV and 80 keV \rightarrow better contrast between different tissues

2D image reconstruction in CT

Ref. 2 – Chapter 3.2

- Data acquired and used to reconstruct image = transmission measurements:
 - 1. Exit (attenuated) X-ray beam intensity detected
 - 2. Ratio attenuated (exit) / unattenuated (entry) X-ray beam intensity \rightarrow projections
 - 3. Reconstruction = extract linear attenuation coefficients from projections
 - 4. Image = display of linear attenuation coefficients' distribution

Transmitted intensity

 $I_{\phi}(x')$

Taken from Ref. 2 pg. 104

- *xy* frame = centred on body
- x'y' rotating frame = centred on scanner
- X-ray source on y' axis

Transmitted intensity $I_{\phi}(x')$:

$$= I_{\phi}^{0}(x')exp\left(-\prod_{AB}\mu[x,y]\,dy'\right)$$

 I_{ϕ}^{0} = unattenuated, entry intensity $\mu[x, y]$ = 2D distribution of linear attenuation coefficients

- Assumptions:
 - 1. Very narrow pencil X-ray beam
 - 2. Monochromatic radiation
 - 3. No scatter radiation reaching the detector Page 28/49

Projection

S

• A single projection $\lambda_{\phi}(x')$ is defined as:

 ∞

$$\lambda_{\phi}(x') = -\ln \left[\frac{I_{\phi}(x')}{I_{\phi}^{0}(x')} \right]$$

$$= \mu \quad [x, y] \delta(x \cos \phi + y \sin \phi - x') \, dx \, dy$$

-\infty

 $\delta = \text{Dirac delta function} \rightarrow \text{picks out } AB \text{ path}$

 Reconstruction = to invert equation above = recover μ[x, y] from set of measured projections λ_φ(x')

Image reconstruction

Ref. 2 – Chapter 3.6

- Mathematics of transmission CT and theory of image reconstruction from projections = research field on its own
- Reconstruction techniques:
 - 1. Convolution and backprojection methods also called filtered backprojection methods
 - 2. Iterative methods
 - 3. Cone-Beam reconstruction

 \rightarrow extract spatial (2D) distribution of linear attenuation coefficients

Filtered backprojection reconstruction algorithms

- Two steps to extract μ[x, y]:
 - 1. Filtered / Convolution step: measured projection $\lambda_{\phi}(x')$ is filtered to give a filtered projection $\lambda_{\phi}^{\dagger}(x')$ = measured projection $\lambda_{\phi}(x')$ convolved with filtering operator p(x'): $\lambda_{\phi}^{\dagger}(x') = \lambda_{\phi}(x') * p(x')$
 - 2. Backprojection step: filtered projection $\lambda_{\phi}^{\dagger}(x')$ is backprojected = distributed over the [x, y] space to give $\mu[x, y]$

$$\mu[x,y] = \lambda^{\dagger} \phi(x') d\phi|_{x'=x} \cos \phi + y \sin \phi$$

π

Iterative reconstruction Ref. 2 – Chapter 3.7 algorithms

- Developed in early days, abandoned, now back in use
- Basic principle:
 - 1. Computed backprojections $\lambda'(\phi, x)$ at position (ϕ, x) :

$$\lambda'(\phi, x) = \prod_{i=1}^{N} \alpha_i(\phi, x) \mu_i$$

N = number of 2D pixels in the image

 α_i = average path length of projection through *i* pixel

 μ_i = linear attenuation coefficient density in *i* pixel

- 2. α_i calculated once at start
- 3. μ_i calculated <u>iteratively</u> until λ' closely resemble measured backprojections \rightarrow image created from μ_i

Cone-Beam reconstruction algorithms

Two main categories:

- Exact Cone-Beam reconstruction algorithms
 Convert measured 1D projection data into plane
 integrals + use backprojection → complex and require
 high dose → considered impractical for medical
 applications
 Output
 Description:
 D
- 2. Approximate Cone-Beam reconstruction algorithms Do not calculate full set of plane integrals \rightarrow simpler and require less dose \rightarrow widely used

Data interpolation in helical CT

Ref. 2 – Chapter 3.5

- Data acquired along helix and not within 2D plane → one (single-slice scanner) or few (multi-slice scanner) projections available in given plane → interpolation to get full set of projections for image reconstruction
 - 1. Interpolation techniques for single-slice scanners:
 - 360° LI (Linear Interpolation): See for ex. W A Kalender et al., Radiology 176, pg. 181-183 (1990)
 - 180° LI (Linear Interpolation): See for ex. C R Crawford & K F King, Med. Phys. 17, pg. 967-982 (1990)
 - Other techniques: J. Hsieh, *Med. Phys.* **23**, pg. 221-229 (1996)
 - 1. Interpolation techniques for multi-slice scanners:
 - See for ex. H. Hu, *Med. Phys.* **26**, pg. 5-18 (1999)

number

• *CT number* of tissue = fractional difference of tissue linear attenuation coefficient μ_{tissue} relative to water μ_{water} measured in units of 0.001 = Hounsfield units (HU):

$$CT \ number = \frac{(\mu_{tissue} - \mu_{water})}{\mu_{water}} \times 1000$$

• Data acquired are rescaled in terms of CT number

2D image display

- Image formation steps:
 - 1. Backprojections are measured
 - 2. μ_i are calculated from backprojections for each *i* pixel
 - 3. CT numbers are calculated and displayed
- "Display" = 512 × 512 matrix of 2D 12 bits pixels → *CT number* range = -1000÷3095 HU. Some manufacturers offer increased range to ~20,000 HU (useful for areas with metal implants)
- Display monitor = typically 256 grey levels → windowing techniques = map selected range of CT numbers (window width) onto grey scale

CT numbers of some

tissues

Tissue	Density and μ_{tissue}	CT number (HU) ¹
Bone	$High \to \mu_{bone} \gg \mu_{water}$	1000÷3000
Blood	$Low \rightarrow \mu_{blood} > \mu_{water}$	40
Muscle	$Low \rightarrow \mu_{muscle} > \mu_{water}$	10÷40
Brain (grey matter)	$Low \rightarrow \mu_{brain,g.m.} > \mu_{water}$	35 ÷45
Brain (white matter)	$Low \rightarrow \mu_{brain,w.m.} > \mu_{water}$	20÷30
Water		0
Lipid	Very low $\rightarrow \mu_{lipid} < \mu_{water}$	-50÷-100
Air	Very low $\rightarrow \mu_{air} \ll \mu_{water}$	-1000

¹At 70 keV

 Soft tissues = low density = CT numbers very close to each other and to zero. Can still be resolved and reconstructed in CT

Signal-to-noise ratio (SNR)

- Sources of image noise:
 - 1. Poisson fluctuations
 - 2. Reconstruction algorithm
 - 3. Electronic noise = small contribution
- Poisson fluctuations propagates through reconstruction algorithm \rightarrow object of uniform density μ appears mottled: $SNR = \frac{\mu}{\Delta \mu}$

 $\Delta \mu = RMS$ fluctuation in μ reconstructed around mean

Contrary to other imaging modalities, CT image noise not affected by pixel size

Spatial resolution

Ref. 2 – Chapter 3.9.1

- Spatial resolution = two terms:
 - 1. In the scan plane
 - 2. Perpendicular to the scan plane
- Factors affecting the spatial resolution:
 - 1. Spatial resolution in the scan plane: acquisition parameters (sampling frequency and bandwidth) and reconstruction algorithm
 - 2. Spatial resolution perpendicular to the scan plane: collimation

Low-contrast resolution

Ref. 2 – Chapter 3.9.1

- The smaller are the details with low-contrast that can be resolved the higher is the imaging efficacy
- Low-contrast resolution = diameter of the smallest low-contrast detail visible on the image
- Factors affecting low-contrast resolution:
 - *1. SNR*
 - 2. Spatial resolution
 - 3. Reconstruction algorithm

Artefact

S

1. Partial-volume artefacts

Due to X-ray beam divergence or anatomical structures not perpendicular to slice \rightarrow regions with density not corresponding to any real tissue

2. Beam-hardening artefacts

Due to faster absorption of low-energy X-ray beam components \rightarrow beam hardens \rightarrow false reduction in density + false details = ex. dark bands

3. Aliasing artefacts

Due to wrong sampling

4. Motion artefacts

Due to patient movement during scan = inconsistencies in the projections \rightarrow "artificial" sudden changes in attenuation

5. Equipment-related artefacts

Due to changes in performance \rightarrow artefacts depend on faulty components = ex. rings due to drifts in detector performance

Effects of reconstruction algorithms on image quality Ref. 2 – Chapters 3.9.9, 3.9.10 and 3.9.11

- Effect of spiral interpolation algorithms
 Some degree of blurring of the image is introduced
- Effect of iterative algorithms
 Noise is lower → dose could be reduced
 Noise texture is different → challenge for the radiologist as not used to it
- Effect of Cone-Beam reconstruction algorithms 'Wave' or 'windmill' artefacts can be introduced

Quality control of CT scanners

Ref. 2 – Chapter 3.11

- X-ray tube tests
- Scan localisation
- CT dosimetry
- Image quality
- Helical scanning

X-ray imaging dose

- X-ray imaging = ionising radiation = associated dose
- Dose = damage:
 - 1. Deterministic effects
 - 2. Stochastic effects
- Damage = side effects \rightarrow concern
- Dose needs to be quantified:
 - Absorbed dose in tissue D_T
 - Equivalent dose in tissue H_T
 - Effective dose in tissue E_T

Dose quantification in CT

- X-ray beam = divergent → beam profile across slice not uniform → CT dose index CTDI
- CTDI measured not on patients but on dosimetry phantoms
- Dose delivered to patients is complex function of:
 - 1. Scanner parameters = geometry, X-ray beam quality and filtering
 - 2. Size of patient
 - 3. Acquisition parameters
- Empirical relation between dose on phantom and effective dose on patient

- T =slice width
- D =dose profile along axis of rotation z
- Dosimetry phantoms used = two cylindrical Perspex phantoms:
 - 1. Diameter 16 cm
 - 2. Diameter 32 cm

Other CT dose indexes

 \Box CTDI depends on where on plane \rightarrow weighted CTDI_w: 1 2

$$*CTDI_{w} = 3 CTDI_{centre,100} + 3 CTDI_{periphery,100}$$

* $CTDI_{centre,100} = CTDI_{100}$ at centre of phantom * $CTDI_{periphery,10} = CTDI_{100}$ at centre of phantom $CTDI_{w}$ under $p = \begin{array}{c} \text{phantom surface} \\ p = \begin{array}{c} \text{pitch of helical scan} = \begin{array}{c} couch \text{ increment in one revolution} \\ \text{Average dose in volume irradiated } CT Digg bickness \end{array}$

Doses associated to imaging procedures Approximate effective doses for common X-ray imaging procedures

Body section	Effective dose (mSv)		
(Procedure)	Planar radiography	CT scan	
Chest	0.04	8.3	
Abdominal	1.5	7.2	
Brain		1.8	
Lumbar spine	2.4		

- Exact dose depends on:
 - 1. Imaging system used
 - 2. Patient's size

CT –vs– planar radiography

CT disadvantages

CT much more complex than planar radiography

CT much more expensive than planar radiography

CT delivers higher dose to patients

• CT advantages

CT allows contrasts down to 1% to be imaged \rightarrow distinguishes soft tissue	Planar radiography allows contrasts only down to 2% to be imaged \rightarrow cannot distinguish soft tissues
CT provides 3D images	Planar radiography provides only 2D images → 3D body structure collapsed on 2D film