

Lecture 3: Ultrasound, MRI and radinucli, **Poltava State Medical** University Department of oncology and radiology with radiation medicine assistant Nestulia K.I.

MAGNETIC RESONANCE IMAGING

NATIONAL GEOGRAPHIC

MRI images of a human brain Photograph by Ken Glaser/Corbis

© 2007 National Geographic Society. All rights reserved.

INTRODUCTION

• On July 3, 1977, the first MRI exam was performed on a human being,

five hours moduce one image.

"Indomitable

1982,

seconds

Definition

 Magnetic resonance imaging (MRI) or Nuclear magnetic resonance imaging (NMRI),

Magnetic resonance tomography (MRT)

 MRI gives different information about structures in the body cannot be seen with an
or computed

teo may show

pance imaging (MRI) test is

Structure of MRI Machine

tto had

• The basic design of an MRI machine resembles a cube,

MRI MAGNET

three basic types of magnets used in

• Resistive magnets

MRI Scanner Gradient Magnets

Z Coil

X Coil

Y Coil

Patient

permanent magnet's magnetic field is

• Superconducting magnets are the most

PATIENT PREPARATION

romove all metal objects (such

• Patient need to take off all or most of clothes, depending on which area is examined.

a gown to use during the

- During the test pt. will lie on back on a table that is part of the MRI scanner.
- Pt's hoad chest, and arms may be held with

<u>at 11</u>

col nervous (claustrophobic)

theeps pt. from

 Inside the scanner pt. will hear a fan and feel air moving. He may also hear tapping or snapping noises as the MRI scans are taken. He may be headphones with music to

(IV) line in your

MRI test

30 to 60 minutes

pain from the magnetic field

MECHANISM OF MRI

• The body is largely composed of water molecules.

p goes through the patient's up a 2-D or 3-D

- Radio frequency waves are absorbed by the protons and then emitted as a signal.
- A radio frequency coil picks up the signal and transmits it to the computer.

 The magnetic field is used to align hydrogen protons in the body.

 The computer processes the data and an image is generated.

bine applies an RF (radio

"Resonance" part of MRI.

Sprees them (only the one or two million) to spin at

a are usually applied through a

by the same time, the three

the act. They are

oak of "slices." Think of a loaf of thin as a few millimeters --

• When the RF pulse is turned off, the hydrogen protons begin to slowly return to their natural alignment within the magnetic field and

bared energy. When they

"Imaging" part of MRI.

be constructed because the

to their

MRI SCANNERS

wary in size and shape, and d-models have some

Open MRI Closed MRI.

CT SCAN MACHINE

• Pictures from an MRI scan are digital images

contrast material

APPLICATIONS

• Magnetic resonance imaging (MRI) is done for used to find problems such as tumors, bleeding, injury, bloodvessel diseases, or infection.

Body MRI

TrueFISP Lung Imaging

 Head. MRI can look at the brain for tumors, an aneurysm, bleeding in the brain, nerve
 ther problems, such as damage
 caused by a stroke

• Chest. MRI the heart, the valves, and coronary blood vessels lungs • **Blood vessels.** Using MRI to look at blood vessels and the flow of blood through them is called magnetic resonance angiography (MRA). It bloods of the arteries and veins, such blood vessel, or the

• Abdomen and pelvis. MRI

liver, gallbladder, pancreas, kidneys, and bladder. It is used to find tumors, bleeding, infection, and blockage uterus and ovaries. In men, it looks at the prostate. • Bones and joints. MRI can check for problems of the bones and joints, such as arthritis problems with the temporomandibular joint bone marrow problems bone tumors cartilage problems torn ligaments or tendons or infection.

• Spine. MRI discs nerves of the spine spinal stenosis, disc bulges, and spinal tumors.

TYPES OF MRISCANS

• <u>1</u>.Basic MRI scans

 T_1 -weighted MRI T_1 -weighted scans are a standard

. T₂- weighted MRI

<u>edema</u>

Effects of TR, TE, T1 and T2 on MR signal

• C . T*2-weighted MRI2

(pronounced "T 2 star") weighted scans use a gradient echo (GRE) sequence, with long $T_{\rm E}$

Spin density weighted MRI

ton density,

Specialized MRI scans

Diffusion MRI

• B. Magnetization Transfer MRI

• Magnetization transfer (MT) refers to the transfer of ognetization from free water protons to NMR and MRI.

Fluid attenuated inversion recovery (FLAIR)

• D. Magnetic resonance angiography (MRA)

<u>Generates pictures of the arteries to evaluate them for</u> <u>stenosis</u> <u>mal narrowing</u>) or <u>aneurysms</u> (vessel

Aure

Magnetic resonance gated intracranial CSF dynamics (MR-GILD)

• F. Mignetic resonance spectroscopy (MRS) is used to measure the levels of different <u>metabolites</u> in body tissues, to diagnose certain metabolic disorders, those affecting the brain, and to provide <u>metabolism</u>.

Functional MRI(fMRI)

<u>brain</u>

<u>neural</u>

[20] blood-oxygen-level dependent

Real-time MRI.

Interventional MRI

www.similima.com

the nationt ar

4. Radiation therapy simulation
to locate tumors within the body in preparation for

iont is placed in

Magnetic resonance guided focused ultrasound (MRgFUS)

Multinuclear imaging

www.similima.com

90.00

aging is primarily a research

Autions containing ¹³C or Aprized ¹²⁹Xe

Susceptibility weighted imaging (SWI)

to enhance the detection and and and

• E. Other specialized MRI technique new methods and variants are often they are able to get

• T*2-weighted turbo spin-echo

• Double inversion recovery MRI
Phase-sensitive inversion recovery MRI (DCIP_MRI), to improve imaging of

MP-RAGE

• Portable magnetic resonance instruments

After the Scan....

the test. Complete

RISKS

Leown harmful effects from the

• Motel parts in the eyes can damage the retina. 1 fragments in the eye, an

• An MRI can cause a burn with some

tehes. Be sure to tell your health

ing a patch.

CONTRAINDICATIONS OF MRI

Pregnancy. MRI test usually is not done PL may be done to get

ultrasound

 Have a pacemaker, artificial limb, any metal pins metal parts in the body (especially in metal heart valves metal clips in brain, metal implants in your ear tattooed eyeliner, other implanted or prosthetic medical device

fragments in your head, eyes, <u>skin</u> spine.

•

recent surgery on a blood vessel. In some

intrauterine device (IUD)

MRI Vs CT

• A computed tomography (CT) scanner uses Xionizing radiation, to acquire its of for examining

• MRI frequency(RF) non-ionizing radio

• CT

banced by use of contrast agents bar atomic number iodine

barium.

MRIparamagneticgadoliniummanganese.

• CT, uses only X-ray attenuation to generate

TPL scanners are able to

tional cross-

• MRI can generate cross-sectional images in any plane (including oblique planes).

limited to acquiring axial (or near axial) plane

near-isotropic resolution

 For purposes of tumor detection and identification in the brain, MRI is generally superior.

solid tumors of the abdomen and chest, CT is often preferred due to less motion artifact

• MRI is also best suited for cases when a patient is to undergo the exam several times successively in the short term,

ADVANTAGES OF MRI

minvasive imaging technique that the to radiation.

 MRI has proven valuable in diagnosing a broad range of conditions including cancer,

• MRI allows physicians to assess the biliary system non invasively and without contrast

DISADVANTAGES OF MRI

still while the images are

 Breathing may cause artifacts or image distortions, during MRI's of the chest, abdomen and pelvis. Bowel motion is another source of motion artifacts in abdomen and pelvic MRI studies.

advised not

pregnant women

no distinguish between cancer tissue and edema fluid.

Joveloping newer MRI scanners

MRI BRAIN

MRI images of a human brain Photograph by Ken Glaser/Corbis

FULL BODYMRI

The Zero Radiation* Full Body MRI Scan

This comprehensive health screening allows our doctors to non-invasively examine the inside of the body in detail and look for early stages of disease.

> *No x-ray radiation and no injections are involved.

Brain MRI

Brain MR/Angiography evaluates brain arteries & blood vessels.

Vital organs of the neck, thorax, abdomen, pelvis, reproductive organs.

Lumbar spine, spinal cord, discs, hips.

www.similima.com

Neck & Carotids MR Angiography

MRI PELVIS

MRI WRIST JOINT

ROTATOR CUFF SHOULDER JOINT

CXR n MRI CHEST

KNEE JOINT

Torn Achilles tendon

Fluid
Interlobular septal thickening is commonly seen in patients with interstitial lung disease.

RENAL MASS

www.medscape.com

A

PULMONARY EMBOLI

Herniated disc between L4 and L5

Disk Herniation

Hose, Echespeed #1 RATERS, CHI 29 H 4/ (4/ Sec0/18 1016/12 Seg RIS-4 1 4 1 3E TR:450 TE:14 EC:1/1 164Hz CTLTOP

is located between the 5th and 6th thoracic vertabrae

MRI BREAST

Normal Breast

Suspicious area that could be cancer

@ Mayo Foundation for Medical Et evention and Research. All rights reserved.

 The normal MRI brain scan above, showing no atrophy, depicts the three areas of interest in the brain's medial temporal lobe: hippocampus (outlined in red); entorhinal cortex (blue) and perirhinal cortex (green).

ALZHEIMER'S DISEASE

MULTIPLE SCLEROSIS

CHRONIC SUBDURAL HAEMATOMA

SUBACUTE EXTRADURAL

Fig. 8-20. Coronal T1- (A) and T2-weighted (B) MR scans show bilateral subdural bematomas. The crescentic right-sided collection (small arrows) is a chronic SDH. The left-sided chronic SDH (large arrows) contains a larger, lentiform subacute collection 125

Axial T1 & T2 WI shows large mixed age chronic SDH with fluid – fluid levels

A) Head CT scan demonstrating

"HE SEEMS CRANKY, BUT HIS HEART IS IN THE RIGHT PLACE - WE GAVE HIM AN MRI TO BE SURE."

129

Bili

Thank you....